skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Sehwan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Individual treatment effect estimation has gained significant attention in recent data science literature. This work introduces the Double Neural Network (Double-NN) method to address this problem within the framework of extended fiducial inference (EFI). In the proposed method, deep neural networks are used to model the treatment and control effect functions, while an additional neural network is employed to estimate their parameters. The universal approximation capability of deep neural networks ensures the broad applicability of this method. Numerical results highlight the superior performance of the proposed Double-NN method compared to the conformal quantile regression (CQR) method in individual treatment effect estimation. From the perspective of statistical inference, this work advances the theory and methodology for statistical inference of large models. Specifically, it is theoretically proven that the proposed method permits the model size to increase with the sample sizenat a rate of$$O(n^{\zeta })$$ O ( n ζ ) for some$$0 \le \zeta <1$$ 0 ζ < 1 , while still maintaining proper quantification of uncertainty in the model parameters. This result marks a significant improvement compared to the range$$0\le \zeta < \frac{1}{2}$$ 0 ζ < 1 2 required by the classical central limit theorem. Furthermore, this work provides a rigorous framework for quantifying the uncertainty of deep neural networks under the neural scaling law, representing a substantial contribution to the statistical understanding of large-scale neural network models. 
    more » « less
  2. Free, publicly-accessible full text available January 1, 2026
  3. Abstract While fiducial inference was widely considered a big blunder by R.A. Fisher, the goal he initially set—‘inferring the uncertainty of model parameters on the basis of observations’—has been continually pursued by many statisticians. To this end, we develop a new statistical inference method called extended Fiducial inference (EFI). The new method achieves the goal of fiducial inference by leveraging advanced statistical computing techniques while remaining scalable for big data. Extended Fiducial inference involves jointly imputing random errors realized in observations using stochastic gradient Markov chain Monte Carlo and estimating the inverse function using a sparse deep neural network (DNN). The consistency of the sparse DNN estimator ensures that the uncertainty embedded in observations is properly propagated to model parameters through the estimated inverse function, thereby validating downstream statistical inference. Compared to frequentist and Bayesian methods, EFI offers significant advantages in parameter estimation and hypothesis testing. Specifically, EFI provides higher fidelity in parameter estimation, especially when outliers are present in the observations; and eliminates the need for theoretical reference distributions in hypothesis testing, thereby automating the statistical inference process. Extended Fiducial inference also provides an innovative framework for semisupervised learning. 
    more » « less